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Title: Study on Active Terahertz Metamaterials 
 
Background:  “Metamaterial” is defined as an artificially structured electromagnetic material exhibiting extraordinary 
response to the electromagnetic radiation that is hardly performed in natural fashions. Study on “metamaterial” is now 
one of the emerging science and engineering fields [1-3]. “Terahertz” staying in between radio and optical frequencies is 
still an unexplored, but now becoming one of the hottest frequency bands [4] to creating new “active” metamaterial 
systems [5]. In [5], Chen et al., first demonstrated an “active” transmittance control by 50% of terahertz radiation by 
implementing an arrayed semiconductor metamaterial structure including Schottky diodes. This is an excellent first-step 
ignition, but fundamental improvements/breakthroughs are necessary to explore deeper science and technology hidden 
behind the presence. On such a background, two dimensional  plasmons (2DPs) in submicron transistors have attracted 
much attention due to their nature of promoting emission/detection/manipulation of electromagnetic radiation in the 
terahertz range [6-10].  
 
Results obtained:  In this program the grantee investigated terahertz radiation sources and modulators formed by active 
metamaterials made with the grantee’s original interdigitated grating gate (DGG) structures on HEMT device layers. The 
principle of operation is the 2DPs which are confined into artificial dimensions of metamaterial structure in a HEMT and 
are electrically or optoelectronically excited to seed the electromagnetic radiation. The basic structure of the grantee’s 
original is focused on (see Fig. 1) and to be improved so as to enhance the radiation power and to realize coherent, 
monochromatic radiation.  To realize coherent monochromatic terahertz radiation and wavelength selectivity, currently 
installed vertical cavity structure was improved (see Fig. 2); the cavity Q factor should be drastically enhanced. The 
device process has been carried out at our own, the Laboratory for Nanoelectronics and Spintronics in RIEC. Together 
with the high Q cavity installation, injection-locking by photomixed dual-laser irradiation was pursued to realize THz 
emission of coherent monochromatic radiation.  Up to now high reflectivity >90% up to 4.5 THz was confirmed from 
the fabricated samples (see Fig. 3). Verification and characterization of real operation is now undertaken. In terms of the 
intensity modulators, the controllability of the transmittance of the 2D plasmonic plane in the DGG-HEMT was 
numerically analyzed. The finite difference time domain analysis demonstrates that the coupling of THz electromagnetic 
waves and 2DPs changes with the electron drift velocity and with the sheet electron density in 2DPs (see Fig. 4). The 
analysis also reveals that the intensity of transmitted waves can be modulated over a wide THz range with an extinction 
ratio beyond 60% by optimizing the sheet electron density and the drift velocity under nominal area-factor condition 
(ratio of the 2DP area over the total active channel area) up to 0.6 [11]. 
 

     

 
Fig. 1. GaAs-based plasmonic Emitter: structure, SEM image, FTIR setup, and measured spectra. 
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Fig. 6. DGG-HEMT intensity modulator. 

Fig. 3 Transmittance of the fabricated device 
measured by FTIR. PW-1500 is the case of the real 
device where ITO is coated on PW-1500 dielectric 
material coated on a GaAs substrate, showing high 
reflectivity (low transmittance). 

Fig. 2. Schematic view of the high-Q 
vertical cavity installed in a DGG- 
HEMT. 

Fig. 5. Transmittance spectra of a 
DGG-HEMT for various electron drift 
velocities: vd and sheet electron density: ns. 


